

TC4420/TC4429

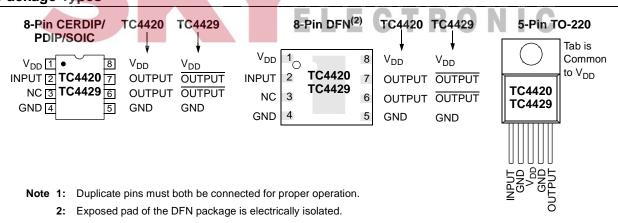
6A High-Speed MOSFET Drivers

Features

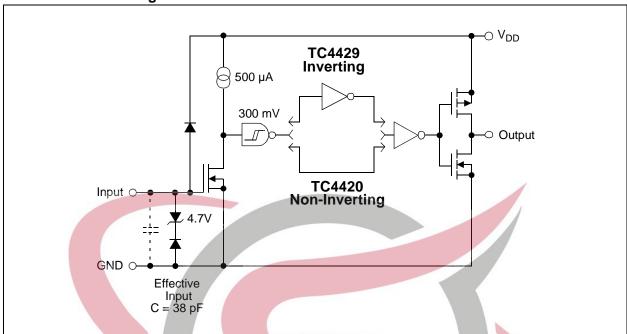
- Latch-Up Protected: Will Withstand >1.5A Reverse Output Current
- Logic Input Will Withstand Negative Swing Up To 5V
- ESD Protected: 4 kV
- · Matched Rise and Fall Times:
 - 25 ns (2500 pF load)
- High Peak Output Current: 6A
- Wide Input Supply Voltage Operating Range:
 - 4.5V to 18V
- High Capacitive Load Drive Capability: 10,000 pF
- Short Delay Time: 55 ns (typ.)
- CMOS/TTL Compatible Input
- Low Supply Current With Logic '1' Input:
 - 450 μA (typ.)
- Low Output Impedance: 2.5Ω
- Output Voltage Swing to Within 25 mV of Ground or V_{DD}
- Space-Saving 8-Pin SOIC and 8-Pin 6x5 DFN Packages

General Description

The TC4420/TC4429 are 6A (peak), single-output MOSFET drivers. The TC4429 is an inverting driver (pin-compatible with the TC429), while the TC4420 is a non-inverting driver. These drivers are fabricated in CMOS for lower power and more efficient operation versus bipolar drivers.


Both devices have TTL/CMOS compatible inputs that can be driven as high as $V_{\rm DD}$ + 0.3V or as low as –5V without upset or damage to the device. This eliminates the need for external level-shifting circuitry and its associated cost and size. The output swing is rail-to-rail, ensuring better drive voltage margin, especially during power-up/power-down sequencing. Propagational delay time is only 55 ns (typ.) and the output rise and fall times are only 25 ns (typ.) into 2500 pF across the usable power supply range.

Unlike other drivers, the TC4420/TC4429 are virtually latch-up proof. They replace three or more discrete components, saving PCB area, parts and improving overall system reliability.


Applications

- Switch-Mode Power Supplies
- Motor Controls
- Pulse Transformer Driver
- Class D Switching Amplifiers

Package Types⁽¹⁾

Functional Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†

Supply Voltage	+20V
Input Voltage – 5V to	$V_{DD} + 0.3V$
Input Current (V _{IN} > V _{DD})	50 mA
Power Dissipation (T _A ≤ 70°C)	
5-Pin TO-220	1.6W
CERDIP	800 mW
DFN	Note 2
PDIP	730 mW
SOIC	470 mW
Package Power Dissipation (T _A ≤ 25°C)	
5-Pin TO-220 (With Heatsink)	12.5W
Thermal Impedances (To Case)	
5-Pin <mark>TO-22</mark> 0 R _{θJ-C}	10°C/W

† Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS

Electrical Specifications: Unless otherwise noted, $T_A = +25^{\circ}\text{C}$ with $4.5\text{V} \leq \text{V}_{DD} \leq 18\text{V}$.												
Parameters	Sym	Min	Тур	Max	Units	Conditions						
Input												
Logic '1', High Input Voltage	V _{IH}	2.4	1.8		V							
Logic '0', Low Input Voltage	V _{IL}	_	1.3	0.8	V							
Input Voltage Range	V _{IN}	- 5		V _{DD} +0.3	V							
Input Current	I _{IN}	-10		+10	μA	$0V \le V_{IN} \le V_{DD}$						
Output												
High Output Voltage	V_{OH}	$V_{DD} - 0.025$			V	DC TEST						
Low Output Voltage	V_{OL}		I	0.025	V	DC TEST						
Output Resistance, High	R _{OH}		2.1	2.8	Ω	$I_{OUT} = 10 \text{ mA}, V_{DD} = 18V$						
Output Resistance, Low	R _{OL}		1.5	2.5	Ω	$I_{OUT} = 10 \text{ mA}, V_{DD} = 18V$						
Peak Output Current	I _{PK}		6.0		Α	V _{DD} = 18V						
Latch-Up Protection Withstand Reverse Current	I _{REV}	+	> 1.5		A	Duty cycle ≤ 2%, t ≤ 300 µsec						
Switching Time (Note 1)				LE	5 [RONIC						
Rise Time	t _R		25	35	ns	Figure 4-1 , C _L = 2,500 pF						
Fall Time	t _F	_	25	35	ns	Figure 4-1 , C _L = 2,500 pF						
Delay Time	t _{D1}	_	55	75	ns	Figure 4-1						
Delay Time	t _{D2}	_	55	75	ns	Figure 4-1						
Power Supply												
Power Supply Current	I _S	_	0.45	1.5	mA	V _{IN} = 3V						
		_	55	150	μΑ	V _{IN} = 0V						
Operating Input Voltage	V _{DD}	4.5	_	18	V							

Note 1: Switching times ensured by design.

^{2:} Package power dissipation is dependent on the copper pad area on the PCB.

DC CHARACTERISTICS (OVER OPERATING TEMPERATURE RANGE)

Electrical Specifications: Unless otherwise noted, over operating temperature range with 4.5V \leq V _{DD} \leq 18V.											
Parameters	Sym	Min	Тур	Max	Units	Conditions					
nput											
Logic '1', High Input Voltage	V_{IH}	2.4	_	_	V						
Logic '0', Low Input Voltage	V_{IL}		1	0.8	V						
Input Voltage Range	V_{IN}	- 5	1	$V_{DD} + 0.3$	V						
Input Current	I _{IN}	-10		+10	μΑ	$0V \le V_{IN} \le V_{DD}$					
Output											
High Output Voltage	V _{OH}	V _{DD} – 0.025		_	V	DC TEST					
Low Output Voltage	V _{OL}		_	0.025	V	DC TEST					
Output Resistance, High	R _{OH}	(-)	3	5	Ω	$I_{OUT} = 10 \text{ mA}, V_{DD} = 18V$					
Output Resistance, Low	R _{OL}		2.3	5	Ω	$I_{OUT} = 10 \text{ mA}, V_{DD} = 18 \text{V}$					
Switching Time (Note 1)											
Rise Time	t _R		32	60	ns	Figure 4-1 , C _L = 2,500 pF					
Fall Time	t _F	_	34	60	ns	Figure 4-1 , C _L = 2,500 pF					
Delay Time	t _{D1}	_ (50	100	ns	Figure 4-1					
Delay Time	t _{D2}	-	65	100	ns	Figure 4-1					
Power Supply											
Power Supply Current	Is	_	0.45	3	mA	V _{IN} = 3V					
		_	60	400	μΑ	$V_{IN} = 0V$					
Operating Input Voltage	V_{DD}	4.5		18	V						

Note 1: Switching times ensured by design.

TEMPERATURE CHARACTERISTICS

Electrical Specifications: Unless otherwise noted, all parameters apply with 4.5V ≤ V _{DD} ≤ 18V.										
Parameters	Sym	Min	Тур	Max	Units	Conditions				
Temperature Ranges										
Specified Temperature Range (C)	T _A	0	_	+70	°C					
Specified Temperature Range (I)	T _A	-25	7	+85	°C					
Specified Temperature Range (E)	T _A	-40	/	+85	°C					
Specified Temperature Range (V)	T _A	-40	F -	+125	°C					
Maximum Junction Temperature	TJ		_	+150	°C					
Storage Temperature Range	T _A	-65	F-I	+150	°C	RONIC				
Package Thermal Resistances										
Thermal Resistance, 5L-TO-220	θ_{JA}	_	71	_	°C/W					
Thermal Resistance, 8L-CERDIP	θ_{JA}	_	150	_	°C/W					
Thermal Resistance, 8L-6x5 DFN	θ_{JA}	_	33.2	_	°C/W	Typical four-layer board with vias to ground plane.				
Thermal Resistance, 8L-PDIP	θ_{JA}	_	125	_	°C/W					
Thermal Resistance, 8L-SOIC	θ_{JA}	_	155	_	°C/W					

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

E

Note: Unless otherwise indicated, $T_A = +25^{\circ}C$ with $4.5V \le V_{DD} \le 18V$.

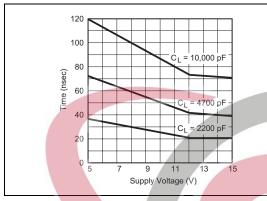


FIGURE 2-1: Rise Time vs. Supply Voltage.

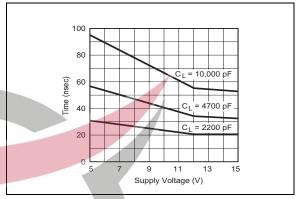


Figure 2-4: Fall Time vs. Supply Voltage.

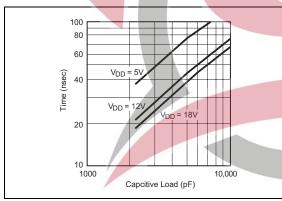


FIGURE 2-2: Rise Time vs. Capacitive Load.

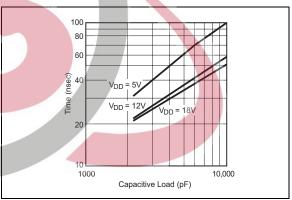
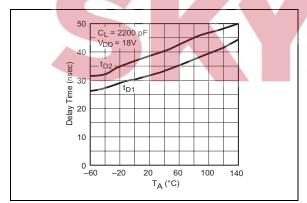



FIGURE 2-5: Fall Time vs. Capacitive Load.

FIGURE 2-3: Propagation Delay Time vs. Temperature.

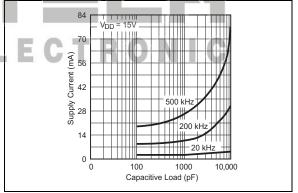


FIGURE 2-6: Supply Current vs. Capacitive Load.

Note: Unless otherwise indicated, $T_A = +25^{\circ}C$ with $4.5V \le V_{DD} \le 18V$.

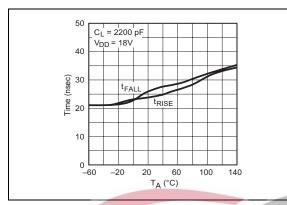


FIGURE 2-7: Rise and Fall Times vs. Temperature.

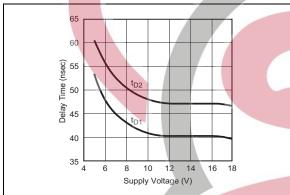


FIGURE 2-8: Propagation Delay Time vs. Supply Voltage.

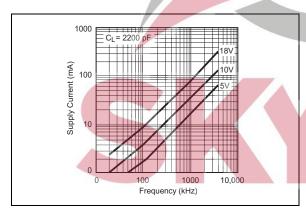


FIGURE 2-9: Supply Current vs. Frequency.

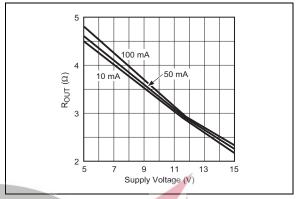
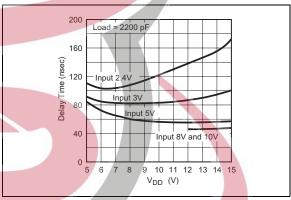



FIGURE 2-10: High-State Output Resistance vs Supply Voltage.

FIGURE 2-11: Effect of Input Amplitude on Propagation Delay.

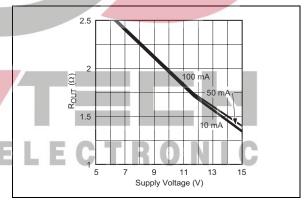
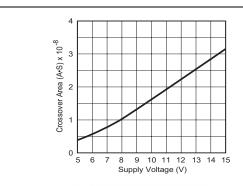



FIGURE 2-12: Low-State Output Resistance vs. Supply Voltage.

Note: Unless otherwise indicated, $T_A = +25^{\circ}C$ with $4.5V \le V_{DD} \le 18V$.

The values on this graph represent the loss seen by the driver during one complete cycle. For a single transition, divide the value by 2.

FIGURE 2-13: Crossover Energy.

3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE

Pin No. 8-Pin CERDIP/ PDIP/SOIC	Pin No. 8-Pin DFN	Pin No. 5-Pin TO-220	Symbol	Description
1	1	_	V_{DD}	Supply input, 4.5V to 18V
2	2	1	INPUT	Control input, TTL/CMOS compatible input
3	3	_	NC	No Connection
4	4	2	GND	Ground
5	5	4	GND	Ground
6	6	5	OUTPUT	CMOS push-pull output
7	7	_	OUTPUT	CMOS push-pull output
8	8	3	V_{DD}	Supply input, 4.5V to 18V
_	PAD	7	NC	Exposed Metal Pad
_		TAB	V_{DD}	Metal Tab is at the V _{DD} Potential

3.1 Supply Input (V_{DD})

The V_{DD} input is the bias supply for the MOSFET driver and is rated for 4.5V to 18V with respect to the ground pins. The V_{DD} input should be bypassed to ground with a local ceramic capacitor. The value of the capacitor should be chosen based on the capacitive load that is being driven. A minimum value of 1.0 μ F is suggested.

3.2 Control Input

The MOSFET driver input is a high-impedance, TTL/CMOS compatible input. The input circuitry of the TC4420/TC4429 MOSFET driver also has a "speed-up" capacitor. This helps to decrease the propagation delay times of the driver. Because of this, input signals with slow rising or falling edges should not be used, as this can result in double-pulsing of the MOSFET driver output.

3.3 CMOS Push-Pull Output

The MOSFET driver output is a low-impedance, CMOS, push-pull style output capable of driving a capacitive load with 6.0A peak currents. The MOSFET driver output is capable of withstanding 1.5A peak reverse currents of either polarity.

3.4 Ground

The ground pins are the return path for the bias current and the high peak currents that discharge the load capacitor. The ground pins should be tied into a ground plane or have very short traces to the bias supply source return.

3.5 Exposed Metal Pad

The exposed metal pad of the 6x5 DFN package is not internally connected to any potential. Therefore, this pad can be connected to a ground plane or other copper plane on a printed circuit board (PCB) to aid in heat removal from the package.

4.0 APPLICATIONS INFORMATION

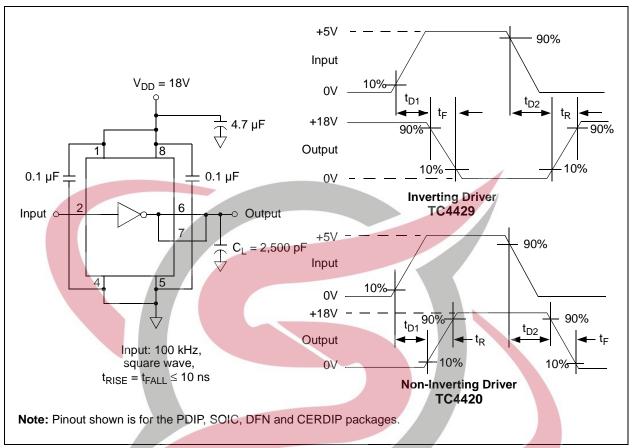
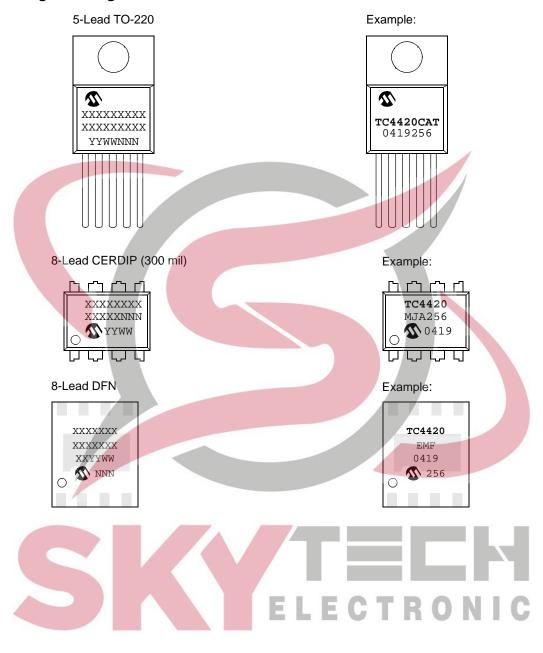
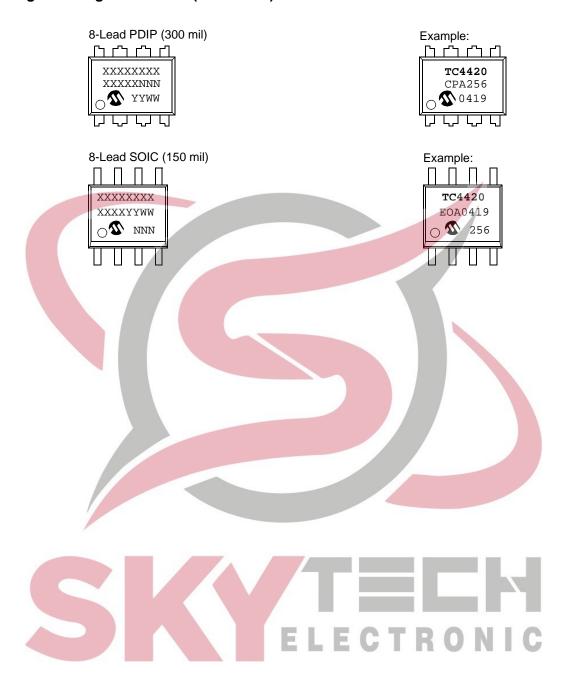



FIGURE 4-1: Switching Time Test Circuits.

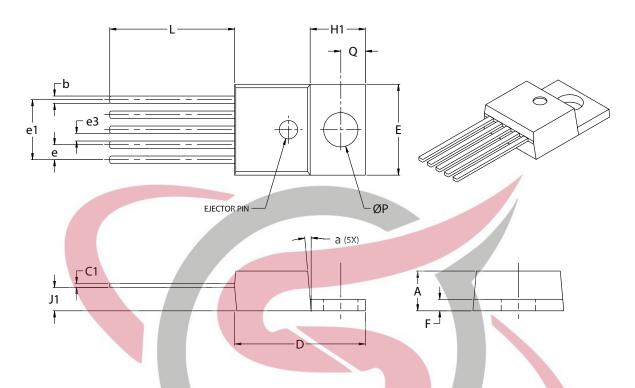
5.0 PACKAGING INFORMATION

5.1 Package Marking Information

Legend: XX...X Customer specific information*


YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')

NNN Alphanumeric traceability code


Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line thus limiting the number of available characters for customer specific information.

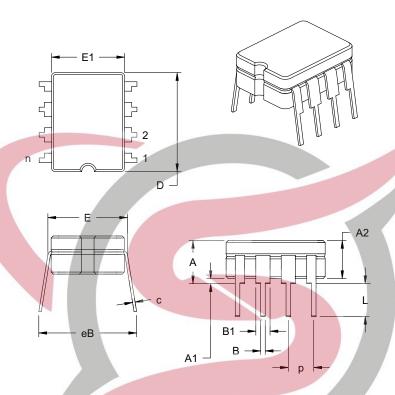
Standard OTP marking consists of Microchip part number, year code, week code, and traceability code.

Package Marking Information (Continued)

5-Lead Plastic Transistor Outline (AT) (TO-220)

	Units	INCHI	ES*	MILLIMETERS		
Dimension Limi	ts	MIN	MAX	MIN	MAX	
Lead Pitch	е	.060	.072	1.52	1.83	
Overall Lead Centers	e1	.263	.273	6.68	6.93	
Space Between Leads	e3	.030	.040	0.76	1.02	
Overall Height	Α	.160	.190	4.06	4.83	
Overall Width	Е	.385	.415	9.78	10.54	
Overall Length	D	.560	.590	14.22	14.99	
Flag Length	H1	.234	.258	5.94	6.55	
Flag Thickness	F	.045	.055	1.14	1.40	
Through Hole Center	Q	103	.113	2.62	2.87	
Through Hole Diameter	Р	.146	.156	3.71	3.96	
Lead Length	L	.540	.560	13.72	14.22	
Base to Bottom of Lead	J1	.090	.115	2.29	2.92	
Lead Thickness	C1	.014	.022	0.36	0.56	
Lead Width	b	.025	.040	0.64	1.02	
Mold Draft Angle	a	3°	7°	3°	7°	

^{*}Controlling Parameter

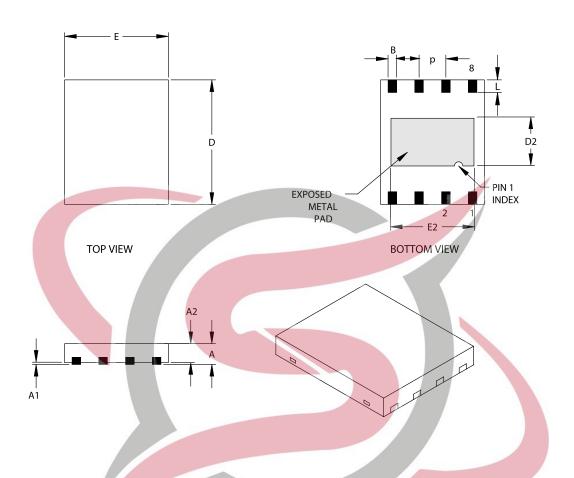

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC equivalent: TO-220

Drawing No. C04-036

8-Lead Ceramic Dual In-line – 300 mil (JA) (CERDIP)


	-						
	Units			INCHES*			8
Dimension	Limits	MIN	NOM	MAX	MIN	MAX	
Number of Pins	n		8			8	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.160	.180	.200	4.06	4.57	5.08
Standoff §	A1	.020	.030	.040	0.51	0.77	1.02
Shoulder to Shoulder Width	E	.290	.305	.320	7.37	7.75	8.13
Ceramic Pkg. Width	E1	.230	.265	.300	5.84	6.73	7.62
Overall Length	D	.370	.385	.400	9.40	9.78	10.16
Tip to Seating Plane	L	.125	.163	.200	3.18	4.13	5.08
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.045	.055	.065	1.14	1.40	1.65
Lower Lead Width	В	.016	.018	.020	0.41	0.46	0.51
Overall Row Spacing	eВ	.320	.360	.400	8.13	9.15	10.16

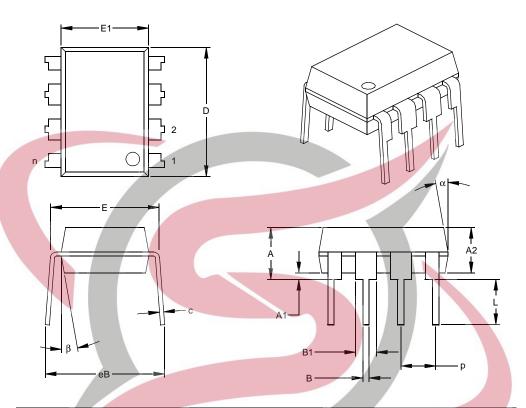
*Controlling Parameter

JEDEC Equivalent: MS-030

Drawing No. C04-010

8-Lead Plastic Dual Flat No Lead Package (MF) 6x5 mm Body (DFN-S) – Saw Singulated

	Units		INCHES		M	ILLIMETERS*	
Dimension Limi	its	MIN	MIN NOM MAX			NOM	MAX
Number of Pins	n		8			8	
Pitch	р		.050 BSC			1.27 BSC	
Overall Height	Α	.033	.035	.037	0.85	0.90	0.95
Package Thickness	A2	.031	.035	.037	0.80	0.89	0.95
Standoff	A1	.000	.0004	.002	0.00	0.01	0.05
Base Thickness	A3	.007	.008	.009	0.17	0.20	0.23
Overall Length	E	.195	.197	.199	4.95	5.00	5.05
Exposed Pad Length	E2	.152	.157	.163	3.85	4.00	4.15
Overall Width	D	.234	.236	.238	5.95	6.00	6.05
Exposed Pad Width	D2	.089	.091	.093	2.25	2.30	2.35
Lead Width	В	.014	.016	.019	0.35	0.40	0.47
Lead Length	L	.024		.026	0.60		0.65


Notes:

JEDEC equivalent: MO-220

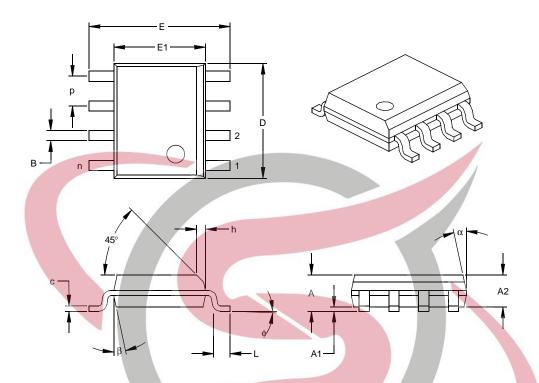
Drawing No. C04-122

Revised 11/3/03

8-Lead Plastic Dual In-line (PA) - 300 mil (PDIP)

	Units		INCHES*		MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	ç		8			8	
Pitch	p		.100			2.54	
Top to Seating Plane	Α	.140	.155	.170	3.56	3.94	4.32
Molded Package Thickness	A2	.115	.130	.145	2.92	3.30	3.68
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	E	.300	.313	.325	7.62	7.94	8.26
Molded Package Width	E1	.240	.250	.260	6.10	6.35	6.60
Overall Length	D	.360	.373	.385	9.14	9.46	9.78
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.045	.058	.070	1.14	1.46	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing §	eB	.310	.370	.430	7.87	9.40	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15
* OtIII Dt							

Notes:


Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed

.010" (0.254mm) per side. JEDEC Equivalent: MS-001

Drawing No. C04-018

^{*} Controlling Parameter § Significant Characteristic

8-Lead Plastic Small Outline (OA) - Narrow, 150 mil (SOIC)

	Units		INCHES*		N.	ILLIMETERS	3
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		8			8	
Pitch	р		.050			1.27	
Overall Height	Α	.053	.061	.069	1.35	1.55	1.75
Molded Package Thickness	A2	.052	.056	.061	1.32	1.42	1.55
Standoff §	A1	.004	.007	.010	0.10	0.18	0.25
Overall Width	Е	.228	.237	.244	5.79	6.02	6.20
Molded Package Width	E1	.146	.154	.157	3.71	3.91	3.99
Overall Length	D	.189	.193	.197	4.80	4.90	5.00
Chamfer Distance	h	.010	.015	.020	0.25	0.38	0.51
Foot Length	L	.019	.025	.030	0.48	0.62	0.76
Foot Angle	ф	0	4	8	0	4	8
Lead Thickness	С	.008	.009	010	0.20	0.23	0.25
Lead Width	В	.013	.017	.020	0.33	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed

.010" (0.254mm) per side.
JEDEC Equivalent: MS-012
Drawing No. C04-057

^{*} Controlling Parameter § Significant Characteristic

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	<u> </u>	<u>xx</u>	<u>xxx</u>	<u>X</u>	E	xamples:	
Device	Temperature Range	Package	Tape and Reel	PB Free	a)	TC4420CAT:	6A High-Speed MOSFET Driver, Non-inverting, TO-220 package, 0°C to +70°C.
Device:	TC4420: TC4429:	6A High-Speed	d MOSFET Driver d MOSFET Driver	Inverting	b)	TC4420EOA:	6A High-Speed MOSFET Driver, Non-inverting, SOIC package, -40°C to +85°C.
Temperature Rang	l = E =			d TO-220 Only)	c)	TC4420VMF:	6A High-Speed MOSFET Driver, Non-inverting, DFN package, -40°C to +125°C.
Package:	JA = MF =	Ceramic Dual II (I-Temp Only) Dual, Flat, No-L	(C-Temp Only) n-line (300 mil Bo Lead (6X5 mm Bo Lead (6X5 mm Bo	dy), 8-lead	a)	TC4429CAT:	6A High-Speed MOSFET Driver, Inverting, TO-220 package, 0°C to +70°C
	PA = OA = OA713 =	(Tape and Reel Plastic DIP (30) Plastic SOIC, (2)) 0 mil Body), 8-lea 150 mil Body), 8-l 150 mil Body), 8-l	d ead	b)	TC4429EPA:	6A High-Speed MOSFET Driver, Inverting, PDIP package, -40°C to +85°C
PB Free	G = = * Available	Lead-Free devi Blank	ce* ckages. Contact y	our local sales	c)	TC4429VMF:	6A High-Speed MOSFET Driver, Inverting, DFN package, -40°C to +125°C

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
- 3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.

ELECTRONIC

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, MXDEV, MXLAB, PICMASTER, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2004, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

QUALITY MANAGEMENT SYSTEM

CERTIFIED BY DNV

ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona and Mountain View, California in October 2003. The Company's quality system processes and procedures are for its PICmicro® 8-bit MCUs, KEELoo® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200

lel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: www.microchip.com

Atlanta

Alpharetta, GA Tel: 770-640-0034 Fax: 770-640-0307

Boston

Westford, MA Tel: 978-692-3848 Fax: 978-692-3821

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo

Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

San Jose

Mountain View, CA Tel: 650-215-1444 Fax: 650-961-0286

Toronto

Mississauga, Ontario,

Canada

Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu

Tel: 86-28-8676-6200 Fax: 86-28-8676-6599

China - Fuzhou

Tel: 86-591-750-3506 Fax: 86-591-750-3521

China - Hong Kong SAR

Tel: 852-240<mark>1-1200</mark> Fax: 852-24<mark>01-3431</mark>

China - Shanghai Tel: 86-21-6275-5700

Fax: 86-21-6275-5060

China - Shenzhen

Tel: 86-755-8290-1380 Fax: 86-755-8295-1393

China - Shunde

Tel: 86-757-2839-5507 Fax: 86-757-2839-5571

China - Qingdao

Tel: 86-532-502-7355 Fax: 86-532-502-7205

ASIA/PACIFIC

India - Bangalore

Tel: 91-80-2229-0061 Fax: 91-80-2229-0062

India - New Delhi

Tel: 91-11-5160-8632 Fax: 91-11-5160-8632

Japan - Kanagawa

Tel: 81-45-471-6166 Fax: 81-45-471-6122

Korea - Seoul

Tel: 82-2-554-7200 Fax: 82-2-558-5932 or

82-2-558-5934

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Kaohsiung

Tel: 886-7-536-4816 Fax: 886-7-536-4817

Taiwan - Taipei

Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Taiwan - Hsinchu

Tel: 886-3-572-9526 Fax: 886-3-572-6459

EUROPE

Austria - Weis

Tel: 43-7242-2244-399 Fax: 43-7242-2244-393

Denmark - Ballerup

Tel: 45-4420-9895 Fax: 45-4420-9910

France - Massy

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Ismaning

Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399

Fax: 31-416-690340

England - Berkshire Tel: 44-118-921-5869 Fax: 44-118-921-5820

08/24/04